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Discussion of Line Width
and Gyromagnetic Ratio™

A considerable amount of work has been
reported on the measurement and interpre-
tation of line width and gyromagnetic ratio
of microwave ferrite materials. Most fre-
quently, measurements are made on a small
sphere placed in a resonant cavity.'™ It is
the purpose of this letter to summarize some
of the significant results of this work, par-
ticularly from the point of view of an engi-
neer using ferrites.

FERROMAGNETIC RESONANCE

Ferrites at microwave frequencies have
losses that depend on the material, its geom-
etry, the frequency, and the magnetic bias-
ing field. Consider first that the ferrite is un-
bounded. For a fixed frequency, the curve
of absorption of energy by the ferrite vs
biasing field exhibits a resonance, and is sim-
ilar to the curve of current vs capacitance of
a series LCR circuit. Resonance occurs at
a field H given by

H=w/y €]

where o is the angular test frequency and v
is the gyromagnetic ratio. This is a ferromag-
netic resonance at which the susceptibility
(ratio of RF magnetization to RF magnetic
field) has a resonant rise.

Line width is a measure of the sharpness
of the resonant rise of absorption: the
smaller the line width, the sharper the reso-
nant rise. In this way, line width is analogous
to the dissipation factor of an LCR circuit.
Line width is defined as the separation of
the two magnetic-field values at which the
loss component of susceptibility is one half
its maximum value.

NATURE OF ABSORPTION RESONANCE IN
THE CASE OF A SPHERE

In practice, measurements of line width
and gyromagnetic ratio are made using a
small sphere in a resonant cavity. The maxi-
mum energy absorbed by the cavity. and
hence the greatest decrease in cavity Q, will
occur at an externally applied magnetic field
determined from (1). However, this is not a
case of ferromagnetic resonance, since that
is determined by the internal biasing field,
and the internal biasing field in the sphere is
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smaller than the applied field because of de-
magnetizing effects. Hogan shows that the
resonant rise in absorption is due to a reso-
nant buildup of the RF fields at the bias
determined by (1).5 However, the suscepti-
bility is relatively small, much smaller than
the susceptibility at ferromagnetic reso-
nance. Susceptibility in this letter will al-
ways be taken to mean the internal or in-
trinsic susceptibility; i.e., the ratio of mag-
netization to internal RF fields.

It is instructive to consider the formula
for the change in the resonant frequency of
the cavity as a function of the intrinsic per-
meability, u., of the sample material. (Cir-
cular polarization is assumed.) u,=1+4u+k&
=14u' +&" —7(u' +k"") where p and % are
the diagonal and off-diagonal terms in the
susceptibility tensor 28

AF w,— 1

F : M+ 2
The frequency F is complex, and 4 is a
geometric constant. This formula shows
that the greatest change in complex fre-
quency occurs when u; approaches —2. Also,
note that AF is relatively small for very
large ..

From the above discussion, it might ap-
pear that the line width as measured in a
sphere is only indirectly related to the in-
trinsic line width that would be measured in
an infinite medium. However, if we assume
the simple mechanism of loss implied in the
Landau-Lifschitz formulation and disregard
the effects of porosity and anisotropy, the
line width as measured in the sphere will
be identical to the line width that would be
measured in an infinite medium.”

@

NATURE OF ABSORPTION IN THE CASE
oF A Robp, Disk

As in the case of the sphere, the reso-
nance in the absorption of a long thin rod
will be due to a resonant buildup of the
RF fields in the sample rather than to a
ferromagnetic resonance. Also, under the
assumptions listed above, the line width in
this case will be the same as in the infinite
medium,”

In the case of a thin disk, the resonance
of the absorption will be a true ferromag-
netic resonance. The internal biasing field at
resonance will be the same as in the case of
the infinite medium, and the line width will
be the same as in the infinite medium even
if porosity and anisotropy are taken into
account. However, despite this advantage
for thin disks, measurements are usually
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made on spheres principally because of the
fact that the spheres are the only true ellip-
soids that can readily be prepared.

EFFECTS OF POROSITY AND ANISOTROPY

Porosity and anisotropy cause local vari-
ations in the magnetic bias within the ma-
terial, and this causes a broadening of the
line width. They also cause the measured
line width to have a different shape from the
simple symmetrical shape predicted by the
L-L formulation, since the L-L formulation
disregards porosity and anisotropy. Since,
for resonance at a given frequency, the mag-
nitude of the internal bias field in the case
of the sphere, rod, and disk are different one
from the other, and since the effects of aniso-
tropy and porosity depend to some extent on
the magnitude of the bias field, the measured
line width will depend on the sample shape.?

It is important to note that magnetic
losses far off resonance are often much lower
than the loss which would be predicted on
the basis of the measured line width. This
has been observed experimentally by Rowen.
and Von Aulock.? Far off resonance, the
losses are approximately those that would
have been predicted on the basis of a line
width that would exist if there were no
broadening caused by anisotropy and poros-
ity. The reason for this may be understood
by the radio engineer from the following cir-
cuit analogy. Consider two tuned amplifiers.
In the one, the tuned circuits in each of the
stages are identical. In the second amplifier,
the tuned circuits are similar to those of the
first, but each circuit is tuned to a slightly
different frequency. The second amplifier
will have a much broader resonance than
the first. However, far off resonance, the
response of both amplifiers will be close.

SURFACE ROUGHNESS, SPIN WAVES

For materials with very narrow intrinsic
line widths, such as single crystals of yttrium
iron garnet, the surface roughness of the
sphere being tested can have a predominant
role in determining line width. Also, for such
materials, losses caused by spin wave
coupling become important.® Since the losses
due to the spin wave coupling depend in
part on the demagnuetizing factors, the shape
of the specimen may appreciably affect the
line width.

SAMPLE SIZE OF THE SPHERE

When we use perturbation techniques,
the sample must be sufficiently small that
the external RF field it sees is essentially
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uniform. Also, the sample must be suf-
ficiently small that there are no “retarda-
tion” or propagation effects within the sam-
ple. The propagation constant within the
sample can be calculated from its dielectric
constant and taking its permeability as—2.
[See (2).] Tompkins and Spencer have de-
rived a formula to take sample size into
account.!® Their formula when expanded in
a Taylor series, becomes

w_ —1)(1—~—

) (e +2) — X2 (Ii:—+ )

X =2xr/MV2¢ where 7 is the radius of the
sample, € is the real part of the dielectric
constant of the ferrite (approximately 10),
amd Mo is the free space wavelength. Ac-
cording to this equation, the error in gyro-
magnetic ratio measured at 3000 megacycles
for a sample diameter of 0.240 inch, or at
9000 megacycles for a sample diameter of
0.080 inch, will be about two per cent. The
error in line width is comparable.

Spencer et al. give experimental data to
show that the line width of R—1 measured
at X band is independent of sample size for
diameters ranging from 235 to 60 mils.!! Stin-
son shows that the line width of polycrystal-
line YIG measured at X band is independent
of sample size for diameters ranging from
40 to 90 mils.’2 Stinson attributes the inde-
pendence of sample diameter to his use of a
cross-guide coupler instead of a resonant
cavity, and refers to an article by Artman
to show that sample size has a strong effect
on measurement of line width when a cavity
is used.’® However, as noted above, Tomp-
kins and Spencer have derived an equation
for measurement in a cavity which shows
only a very small dependence on diameter
for the range of diameters covered by Stin-
son. Tompkins and Spencer discuss the dis-
crepancy between their equation and that of
Artman, and this writer believes that Tomp-
kins and Spencer are correct.
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Plotting Impedances with Negative
Resistive Components*

The plotting of impedances with nega-
tive resistive components on some sort of
inverted Smith chart is becoming more
common.! This note suggests standardizing
on a particular form, for psychological rea-
sons. The suggested form is represented by
“r”=—1/T, where I' is the actual complex
reflection coefficient, and “I'” is the value
plotted on the chart. The corresponding im-
pedance relation is “Z/Zy"=—Zy/Z. The
advantages claimed for this particular form
are:

1) The transformation is analytic as op-
posed to the one mentioned by Stock and
Kaplan.!

2) If both negative and positive resist-
ances are being plotted on two Smith charts,
the result, as shown in Fig. 1, looks like the
representation of the world on the covers of
some atlases. It fits well with the concept of
projection on the unit sphere.
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Fig. 1—Double SMITH-HTIMS chart.
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3) It follows from 1) that if impedance
is being plotted as a function of real fre-
quency, then points of stability or insta-
bility as indicated by complex frequency
will fall on the same side of the curve on
both charts.

A possible disadvantage is the opposite
sense of rotation of the two charts for trans-
mission-line calculations, but this seems
natural and easy to remember for two circles
in “contact.”

R. L. KvaL

Electrical Eng. Dept. and
Res. Lab. of Electronics
Mass. Inst. Tech.
Cambridge, Mass.

Comments on “The Design of
Ridged Waveguide™*

An article by Hopfer,! which appeared
in 1955, takes into account the step dis-
continuity susceptance in the computa-
tion of the cutoff frequencies of ridged-
waveguide. Cutoff frequencies are com-
puted utilizing the transverse resonance
method. Values of the normalized step
susceptance that were used in computing
the cutoff frequencies were taken from pub-
lished data in the Waveguide Handbook.2

It seems that this procedure for deter-
mining the step susceptance is questionable.
The transverse resonance method as applica-
ble to ridged waveguide entails computing
the circuit parameters of parallel plane
transmission lines. Consequently, the step
discontinuity susceptance should be com-
puted as a step in a parallel plane transmis-
sion line3* rather than as a step in rectangu-
lar waveguide.

Ricuarp M. KURZROK

RCA Surface Communications
Systems Laboratory

75 Varick Street

New York 13, N. Y.
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